Jupyter TensorFlow 示例

在 Kubeflow Notebook 中使用 Jupyter 和 TensorFlow 的示例

Mnist 示例

(改编自 tensorflow/tensorflow - mnist_softmax.py

  1. 创建 Notebook 服务器时,选择一个已安装 Jupyter 和 TensorFlow 的容器镜像

  2. 使用 Jupyter 界面创建一个新的 Python 3 Notebook。

  3. 复制以下代码并将其粘贴到您的 Notebook 中

    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    import tensorflow as tf
    
    x = tf.placeholder(tf.float32, [None, 784])
    
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    
    y_ = tf.placeholder(tf.float32, [None, 10])
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    
    train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
    
    sess = tf.InteractiveSession()
    tf.global_variables_initializer().run()
    
    for _ in range(1000):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print("Accuracy: ", sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    
  4. 运行代码。您应该会看到来自 TensorFlow 的一些 WARNING 消息,然后是一行显示训练准确率,例如:

    Accuracy:  0.9012
    

下一步

反馈

此页面有帮助吗?